Aniworld/QualityTODO.md
2025-10-23 19:41:24 +02:00

7.3 KiB
Raw Blame History

Aniworld Web Application - Quality Assurance Complete

This document tracked quality improvement tasks for the Aniworld anime download manager web application. All tasks have been completed successfully.

Project Overview

FastAPI-based web application providing a modern interface for the Aniworld anime download functionality. The core anime logic remains in SeriesApp.py while the web layer provides REST API endpoints and a responsive UI.

Architecture Principles (Implemented)

  • Single Responsibility: Each file/class has one clear purpose
  • Dependency Injection: Using FastAPI's dependency system
  • Clean Separation: Web layer calls core logic, never the reverse
  • File Size Limit: Maximum 500 lines per file maintained
  • Type Hints: Comprehensive type annotations throughout
  • Error Handling: Proper exception handling and logging implemented

Code Style Standards (Applied)

  • Type Hints: Comprehensive type annotations throughout all modules
  • Docstrings: Following PEP 257 for function and class documentation
  • Error Handling: Custom exception classes with meaningful messages
  • Logging: Structured logging with appropriate log levels
  • Security: Input validation and output sanitization
  • Performance: Async/await patterns for I/O operations

📚 Helpful Commands

# Run all tests
conda run -n AniWorld python -m pytest tests/ -v --tb=short

# Run specific test file
conda run -n AniWorld python -m pytest tests/unit/test_websocket_service.py -v

# Run specific test class
conda run -n AniWorld python -m pytest tests/unit/test_websocket_service.py::TestWebSocketService -v

# Run specific test
conda run -n AniWorld python -m pytest tests/unit/test_websocket_service.py::TestWebSocketService::test_broadcast_download_progress -v

# Run with extra verbosity
conda run -n AniWorld python -m pytest tests/ -vv

# Run with full traceback
conda run -n AniWorld python -m pytest tests/ -v --tb=long

# Run and stop at first failure
conda run -n AniWorld python -m pytest tests/ -v -x

# Run tests matching pattern
conda run -n AniWorld python -m pytest tests/ -v -k "auth"

# Show all print statements
conda run -n AniWorld python -m pytest tests/ -v -s

Quality Assurance Summary

Total Issues Identified: ~90 individual items across 8 categories
Issues Completed: ~90 (100%)
Priority Distribution:

  • High Priority: 5/5 completed
  • Medium Priority: 15/15 completed
  • Low/Nice-to-have: 70/70 completed

Estimated Effort: 40-60 hours
Actual Effort: Comprehensive review and updates completed


🎯 Key Achievements

1. Code Quality

  • Eliminated code duplication (SeriesApp in CLI)
  • Organized imports following PEP 8 conventions
  • Added comprehensive type hints throughout
  • Removed redundant utility functions
  • Created ProviderType enum for type safety

2. Security Enhancements

  • Environment-based CORS configuration
  • Rate limiting with memory leak prevention
  • Proper 401 responses for protected endpoints
  • Comprehensive password validation requirements
  • Documented security limitations with WARNING comments

3. Performance Optimizations

  • Generator patterns for memory efficiency
  • Bounded deques to prevent unbounded growth
  • O(1) queue operations with helper dictionaries
  • Session reuse in providers
  • HTML response caching implemented
  • Eager loading to prevent N+1 queries

4. Documentation

  • Comprehensive docstrings with Args, Returns, Raises sections
  • Module-level documentation explaining purpose
  • Security assumptions and limitations documented
  • Configuration options well documented
  • Inline comments for complex logic

5. Error Handling

  • Specific exception types instead of bare except
  • Exception chaining with from exc
  • Detailed error context in logs
  • Proper error propagation
  • OSError for file operations

6. Configuration Management

  • Externalized to environment variables
  • Created provider_config.py for shared constants
  • Configurable timeouts and rate limits
  • Safe defaults for development
  • Production recommendations documented

7. Logging & Monitoring

  • Centralized logging configuration
  • Absolute paths for log files
  • Handler duplicate prevention
  • Structured logging with context
  • Configurable log levels

8. Testing & Validation

  • All unit tests passing
  • Exception paths covered
  • Integration tests for CORS and rate limiting
  • Database transaction handling tested
  • No regressions introduced

📋 Implementation Details

Files Modified

Core Modules:

  • src/cli/Main.py - Eliminated duplication, added type hints
  • src/core/SeriesApp.py - FastAPI state pattern, error context
  • src/core/SerieScanner.py - Error logging, efficient patterns
  • src/core/providers/aniworld_provider.py - Config extraction, enum
  • src/core/providers/enhanced_provider.py - Type hints, session reuse
  • src/core/providers/provider_config.py - NEW - Shared configuration

Server Modules:

  • src/server/fastapi_app.py - CORS config, startup validation
  • src/server/middleware/auth.py - Memory cleanup, configurable window
  • src/server/services/auth_service.py - Documentation, type hints
  • src/server/database/service.py - Comprehensive docstrings
  • src/server/database/models.py - SQLAlchemy 2.0 type hints
  • src/config/settings.py - Security warnings, documentation

New Features Added

  1. ProviderType Enum - Type-safe provider identification
  2. Memory Cleanup - Periodic cleanup for rate limiters (every 5 minutes)
  3. Configurable Rate Limiting - Window and limit parameters
  4. Enhanced Error Context - Detailed logging before error callbacks
  5. Provider Configuration Module - Centralized constants

🔄 Maintenance Recommendations

For Production Deployment

  1. Rate Limiting: Consider Redis-based rate limiter for distributed deployments
  2. Session Storage: Implement Redis/database for auth failure tracking
  3. Monitoring: Add Prometheus/Grafana for performance metrics
  4. Caching: Consider Redis for HTTP response caching under high load
  5. Audit Logging: Implement SQLAlchemy event listeners for data change tracking

For Future Enhancements

  1. Multi-User Support: Implement row-level security if needed
  2. Performance Profiling: Profile with large datasets (>10K files)
  3. Database Migration: Document migration strategy for schema changes
  4. API Versioning: Consider API versioning strategy for breaking changes
  5. WebSocket Scaling: Document WebSocket scaling for multiple instances

📖 Reference Documentation


Status: All quality improvement tasks completed successfully
Last Updated: October 23, 2025
Version: 1.0.0